Беседа девятая. Продолжение 5

Постоянная времени

Н. — Очень остроумная идея. Однако я хотел бы точно знать, что ты подразумеваешь под постоянной времени.

Л. — Речь идет о совершенно классической величине, которую используют во всех схемах, построенных на резисторе и конденсаторе. Видишь ли, Незнайкин, при умножении емкости конденсатора С, стоящего, например, в интегрирующей схеме, на сопротивление резистора R получают величину, которая имеет размерность времени и может быть выражена в секундах (при условии, что С выражено в фарадах, a R — в омах). Это время, необходимое для заряда или разряда конденсатора через резистор на 63% относительно установившегося значения. Не проси меня обосновать это число, ибо это вынудило бы нас заняться дифференциальными уравнениями.

Н. — Все, что хочешь, но только не это!

Л. — Успокойся, в этом нет необходимости. По прошествии времени, равного постоянной времени RC, конденсатор зарядится или разрядится на 63% относительно установившегося Значения. По истечении удвоенной постоянной времени он зарядится или разрядится на 86%. И, наконец, по прошествии утроенной постоянной времени его заряд (или разряд) достигнет 95%. Иначе говоря, на характеристиках каждой конкретной дифференцирующей или интегрирующей схемы сказываются не индивидуальные значения R или С, а их произведение, выражаемое в секундах (или микросекундах) и именуемое постоянной времени.

Н. — Так значит, если я правильно понял, когда потребовалось разделить сигналы по их длительности, ты выбрал малую постоянную времени по сравнению с длительностью сигнала на рис. 90, а и большую по сравнению с длительностью сигнала на рис. 91, a?

Л. — Ты совершенно прав, именно так выбирают постоянную времени. Впрочем, именно по этой причине дискриминатор по длительности сигналов работает тем эффективнее, чем выше отношение между длительностью длинного и короткого сигналов.

septilos.ru