Счет до 2n
Л. — Да, но это быстро станет очень интересным. Мы соберем целую серию триггеров по приведенной на рис. 82 схеме и сделаем так, чтобы, опрокидываясь, один триггер передавал сигнал на вход другого. Например, мы приложим напряжение коллектора транзистора Т1 каждого триггера на дифференцирующую схему (один из вариантов которой приведен на рис. 64).
Рис. 116. Двоичный счетчик состоит из цепочки триггеров, где один управляет другим; состояние каждого триггера индицируется лампочкой.
При каждом возвращении на нуль триггер подаст отрицательный импульс на вход следующего и тем самым заставит его опрокинуться (рис. 116).
Н. — Я охотно допускаю, что каждый прямоугольник обозначает триггер с двумя устойчивыми состояниями со схемы на рис. 82, но я совершенно не понимаю, откуда у каждого такого триггера взялось по два входа и выхода.
Л. — Двумя входами служат конденсаторы С3 и С4 со схемы на рис. 82. Здесь я, как и раньше, подаю сигнал одновременно на оба входа, но так поступают не всегда. Два выхода соединены с коллекторами транзисторов.
Рассмотрим цепочку из таких триггеров. Предположим, что вначале они все стоят на нуле. Как ты видишь, каждый раз при получении нечетного количества импульсов первый триггер станет на единицу, а после прохождения нечетного числа импульсов вернется на нуль. Второй триггер переключится на единицу после второго импульса, останется в этом положении после
третьего и вернется на нуль после четвертого импульса, затем пропустит в этом положении пятый импульс. Продолжая рассматривать поведение цепочки триггеров, ты можешь придти к выводу, что чем дальше в цепочке стоит триггер, тем реже он переключается. Впрочем, в этом нет ничего удивительного, так как каждый из них делит частоту поступающего к нему сигнала на два. Мне достаточно определить положение триггеров, например, с помощью маленькой лампы, загорающейся при переключении триггера на единицу, чтобы узнать, сколько сигналов пришло на вход цепочки. Я напишу 1 под лампой первого триггера, 2 под лампой второго, 4 под лампой третьего, 8 под лампой четвертого, 16, 32 и 64 соответственно под лампами пятого, шестого и седьмого…
После прохождения некоторого количества импульсов мне останется лишь выписать числа под горящими лампочками и сложить их. Сумма даст мне количество поступивших импульсов. Как ты видишь, прибавляя новый каскад я каждый раз удваиваю максимальное число. Так с помощью цепочки из десяти каскадов я могу считать до 1 024, а при наличии 11, 12 и 13 каскадов мои возможности считать увеличиваются соответственно до 2 048, 4 096 и 8 192. Ты видишь, что предел растет довольно быстро.
Н. — Согласен, но все же это довольно сложно. А в довершение всего ты не можешь быть уверен, что количество поступивших импульсов не превысило максимального числа, которое твой счетчик способен отобразить. В таком случае ты не будешь знать, насколько можно верить его показаниям.