Беседа четырнадцатая. Продолжение5

Область применения цифровых вычислительных машин

Н. — Мне не хотелось бы тебя огорчать, Любознайкин, но, по правде говоря, эти цифровые вычислительные машины создают у меня такое впечатление, как если бы водородной бомбой захотели убить одну муху. Ты напихал в свою машину чудовищное количество транзисторов, диодов и других компонентов лишь для того, чтобы умножить 26 на 13! Вот уж действительно колоссальные средства для достижения ничтожного результата!

Л. — Ты сразу указал на очень важный вопрос возможностей использования цифровых вычислительных машин. Добавляя к изображенной на рис. 133 схеме умножителя дополнительные каскады, т. е. удлиняя сдвигающие регистры и увеличивая число других схем, можно наращивать возможности умножителя.

Н. — Согласен, но одновременно ты увеличишь и его сложность.

Л. — Совершенно верно, но ты не заметил одной особенности; каждый раз, когда я прибавляю один «ломтик» к сдвигающим регистрам и одну схему g, устройство приобретает способность работать с числами па одну цифру длиннее, т. е. с числами, в 2 раза большими; иначе говоря, добавляя один каскад я удваиваю возможности машины

Поэтому цифровая вычислительная машинч, катастрофически разорительная при работе с числами, состоящими из 4 или 5 цифр, становится очень выгодной при работе с числами, состоящими из 20 или 30 цифр. Так, например, двоичному числу из 30 цифр соответствуют десятичные числа порядка миллиарда, а результат умножения получается исключительно быстро. Короче говоря, цифровые вычислительные машины в основном предназначены для получения высокой точности при действиях с числами, состоящими из большого количества цифр

Н. — Если я правильно понял, ты хочешь сказать, что возможности машины растут по закону геометрической прогрессии, а количество ее каскадов увеличивается по закону арифметической прогрессии?

Л. — О боже! Хороший мне урок! Полагая, что ты всегда с трудом понимаешь мои объяснения, я на этот раз слишком упростил свой язык. Ты совершенно прав.

Н. — Но объясни мне, пожалуйста, почему ты говорил мне э высокой точности; я бы скорее сказал о больших числах, так как двоичные числа не имеют дробей.

Л. — Первый раз слышу! Ты можешь свободно написать двоичное число с запятой и с цифрами после этой запятой. Так, например, число 11, 011 означает 3 целых (одна 2 одна 1), справа от запятой мы видим нуль, означающий, что дробная часть числа не содержит половины, второй после запятой стоит цифра 1, означающая наличие четверти, и следующая цифра 1 показывает, что имеется еще одна восьмая. Иначе говоря, расположенная справа от запятой часть числа означает следующее: нуль половин одна четверть одна восьмая, т. е. три восьмых Как ты видишь, здесь, как и в десятичной системе счисления, можно говорить о дробной части числа, отделяемой от остальной части числа запятой.

Н. — Вот система счисления, которая должна особенно понравиться англичанам. Традиционный английский дюйм, тегко делится на половники, четверти, восьмые и т. д При такой системе счисления относительно просто говорить о 17/64 дюйма.

Л. — Признаюсь, что это никогда не приходило мне в голову. В самом деле можно было бы подумать, что двоичную си: тему обозначения дробей придумали, чтобы доставить удовольствие тем, кто пользуется этими замысловатыми дюймами и их невероятными долями. А теперь, чтобы у тебя сложилось общее представление о цифровых вычислительных машинах, нам стоит сказать несколько слов о системах памяти.

Н. — Что за любопытное утронство? Для чего оно служит?

septilos.ru